Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Nature ; 627(8003): 407-415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383779

RESUMO

Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.


Assuntos
Aquaporina 4 , Autoanticorpos , Autoantígenos , Linfócitos B , Tolerância Imunológica , Neuromielite Óptica , Animais , Humanos , Camundongos , 60533 , Aquaporina 4/deficiência , Aquaporina 4/genética , Aquaporina 4/imunologia , Aquaporina 4/metabolismo , Autoanticorpos/imunologia , Autoantígenos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígenos CD40/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Neuromielite Óptica/imunologia , Neuromielite Óptica/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Timo/citologia , Timo/imunologia , Células Epiteliais da Tireoide/imunologia , Células Epiteliais da Tireoide/metabolismo , Transcriptoma
2.
Fluids Barriers CNS ; 21(1): 1, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178155

RESUMO

It has been proposed that cerebrospinal fluid (CSF) can enter and leave the retina and optic nerve along perivascular spaces surrounding the central retinal vessels as part of an aquaporin-4 (AQP4) dependent ocular 'glymphatic' system. Here, we injected fluorescent dextrans and antibodies into the CSF of mice at the cisterna magna and measured their distribution in the optic nerve and retina. We found that uptake of dextrans in the perivascular spaces and parenchyma of the optic nerve is highly sensitive to the cisternal injection rate, where high injection rates, in which dextran disperses fully in the sub-arachnoid space, led to uptake along the full length of the optic nerve. Accumulation of dextrans in the optic nerve did not differ significantly in wild-type and AQP4 knockout mice. Dextrans did not enter the retina, even when intracranial pressure was greatly increased over intraocular pressure. However, elevation of intraocular pressure reduced accumulation of fluorescent dextrans in the optic nerve head, and intravitreally injected dextrans left the retina via perivascular spaces surrounding the central retinal vessels. Human IgG distributed throughout the perivascular and parenchymal areas of the optic nerve to a similar extent as dextran following cisternal injection. However, uptake of a cisternally injected AQP4-IgG antibody, derived from a seropositive neuromyelitis optica spectrum disorder subject, was limited by AQP4 binding. We conclude that large molecules injected in the CSF can accumulate along the length of the optic nerve if they are fully dispersed in the optic nerve sub-arachnoid space but that they do not enter the retina.


Assuntos
Dextranos , Neuromielite Óptica , Camundongos , Humanos , Animais , Dextranos/metabolismo , Nervo Óptico/metabolismo , Retina/metabolismo , Neuromielite Óptica/metabolismo , Aquaporina 4/metabolismo , Autoanticorpos/metabolismo
3.
Brain ; 147(1): 163-176, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37740498

RESUMO

Microglia-mediated neuroinflammation contributes to acute demyelination in neuromyelitis optica spectrum disorders (NMOSD). Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in the CSF has been associated with microglial activation in several neurodegenerative diseases. However, the basis for this immune-mediated attack and the pathophysiological role of sTREM2 in NMOSD remain to be elucidated. Here, we performed Mendelian randomization analysis and identified a genetic association between increased CSF sTREM2 and NMOSD risk. CSF sTREM2 was elevated in patients with NMOSD and was positively correlated with neural injury and other neuroinflammation markers. Single-cell RNA sequencing of human macrophage/microglia-like cells in CSF, a proxy for microglia, showed that increased CSF sTREM2 was positively associated with microglial dysfunction in patients with NMOSD. Furthermore, we demonstrated that sTREM2 is a reliable biomarker of microglial activation in a mouse model of NMOSD. Using unbiased transcriptomic and lipidomic screens, we identified that excessive activation, overwhelmed phagocytosis of myelin debris, suppressed lipid metabolism and enhanced glycolysis underlie sTREM2-mediated microglial dysfunction, possibly through the nuclear factor kappa B (NF-κB) signalling pathway. These molecular and cellular findings provide a mechanistic explanation for the genetic association between CSF sTREM2 and NMOSD risk and indicate that sTREM2 could be a potential biomarker of NMOSD progression and a therapeutic target for microglia-mediated neuroinflammation.


Assuntos
Doença de Alzheimer , Neuromielite Óptica , Animais , Camundongos , Humanos , Microglia/metabolismo , Doença de Alzheimer/metabolismo , Neuromielite Óptica/genética , Neuromielite Óptica/metabolismo , Doenças Neuroinflamatórias , Biomarcadores/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética
4.
Eur J Neurosci ; 58(9): 3932-3961, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37831013

RESUMO

Astrocytes have countless links with neurons. Previously, astrocytes were only considered a scaffold of neurons; in fact, astrocytes perform a variety of functions, including providing support for neuronal structures and energy metabolism, offering isolation and protection and influencing the formation, function and elimination of synapses. Because of these functions, astrocytes play an critical role in central nervous system (CNS) diseases. The regulation of the secretiory factors, receptors, channels and pathways of astrocytes can effectively inhibit the occurrence and development of CNS diseases, such as neuromyelitis optica (NMO), multiple sclerosis, Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease. The expression of aquaporin 4 in AS is directly related to NMO and indirectly involved in the clearance of Aß and tau proteins in AD. Connexin 43 has a bidirectional effect on glutamate diffusion at different stages of stroke. Interestingly, astrocytes reduce the occurrence of PD through multiple effects such as secretion of related factors, mitochondrial autophagy and aquaporin 4. Therefore, this review is focused on the structure and function of astrocytes and the correlation between astrocytes and CNS diseases and drug treatment to explore the new functions of astrocytes with the astrocytes as the target. This, in turn, would provide a reference for the development of new drugs to protect neurons and promote the recovery of nerve function.


Assuntos
Doença de Alzheimer , Doenças do Sistema Nervoso Central , Esclerose Múltipla , Neuromielite Óptica , Doença de Parkinson , Humanos , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Neuromielite Óptica/metabolismo , Esclerose Múltipla/metabolismo , Doença de Parkinson/metabolismo , Doença de Alzheimer/metabolismo
5.
J Neuroinflammation ; 20(1): 89, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013543

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disorder of the central nervous system (CNS) triggered by autoimmune mechanisms. Microglia are activated and play a pivotal role in response to tissue injury. Triggering receptor expressed on myeloid cells 2 (TREM2) is expressed by microglia and promotes microglial activation, survival and phagocytosis. Here, we identify a critical role for TREM2 in microglial activation and function during AQP4-IgG and complement-induced demyelination. TREM2-deficient mice had more severe tissue damage and neurological impairment, as well as fewer oligodendrocytes with suppressed proliferation and maturation. The number of microglia clustering in NMOSD lesions and their proliferation were reduced in TREM2-deficient mice. Moreover, morphology analysis and expression of classic markers showed compromised activation of microglia in TREM2-deficient mice, which was accompanied by suppressed phagocytosis and degradation of myelin debris by microglia. These results overall indicate that TREM2 is a key regulator of microglial activation and exert neuroprotective effects in NMOSD demyelination.


Assuntos
Glicoproteínas de Membrana , Microglia , Neuromielite Óptica , Receptores Imunológicos , Animais , Camundongos , Sistema Nervoso Central , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Bainha de Mielina/metabolismo , Neuromielite Óptica/metabolismo , Fagocitose/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
6.
J Neuroimmunol ; 377: 578065, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36931208

RESUMO

Toll-like receptors (TLRs) are a class of proteins that play essential roles in innate and adaptive immune responses. Recently, accumulating evidence has demonstrated that impairments in the TLR signalling pathway contribute to the development and progression of neuroimmune diseases, such as neuromyelitis optica spectrum disorder (NMOSD). However, the cellular and molecular mechanisms are still largely unknown. In this study, we report a novel variant, C52Y, of canopy FGF signalling regulator 3 (CNPY3) from patients with familial NMOSD and demonstrate that this variant shows a stronger interaction with GP96 and TLRs than with wild-type CNPY3. We find that C52Y has dominant negative effects on TLR4 surface expression. Importantly, the TLR4 surface expression level is decreased in RAW264.7 cells infected with the C52Y virus upon LPS stimulation. We further demonstrate that bone marrow-derived macrophages (BMDMs) from CNPY3C52Y/+ transgenic mice secrete less tumour necrosis factor (TNF) and interleukin (IL)-6 than BMDMs from wild-type mice upon stimulation with LPS. These data suggest that impairment of TLR trafficking may contribute to the development of neuroimmune disorders.


Assuntos
Neuromielite Óptica , Animais , Camundongos , Imunidade , Interleucina-6 , Lipopolissacarídeos , Camundongos Transgênicos , Neuromielite Óptica/genética , Neuromielite Óptica/metabolismo , Receptor 4 Toll-Like/genética , Receptores Toll-Like/metabolismo
7.
FEBS J ; 290(10): 2616-2635, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36597763

RESUMO

Aquaporin-4 (AQP4) is a dominant water channel in the brain and is expressed on astrocytic end-feet, mediating water homeostasis in the brain. AQP4 is a target of an inflammatory autoimmune disease, neuromyelitis optica spectrum disorders (NMOSD), that causes demyelination. An autoantibody recognizing the extracellular domains of AQP4, called NMO-IgG, is critically implicated in the pathogenesis of the disease. Complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) in astrocytes are the primary causes of the disease, preceding demyelination and neuronal damage. Additionally, some cytotoxic effects of binding of NMO-IgG to AQP4, independent of CDC/ADCC, have been proposed. Antibody-induced endocytosis of AQP4 is thought to be involved in CDC/ADCC-independent cytotoxicity induced by the binding of NMO-IgG to AQP4. To clarify the mechanism responsible for antibody-induced endocytosis of AQP4, we investigated the subcellular localization and trafficking of AQP4, focusing on its C-terminal domain, by making a variety of deletion and substitution mutants of mouse AQP4. We found that a tyrosine-based YXXΦ motif in the C-terminal domain of AQP4 plays a critical role in the steady-state subcellular localization/turnover and antibody-induced endocytosis/lysosomal degradation of AQP4. Our results indicate that the YXXΦ motif has to escape the inhibitory effect of the C-terminal 10-amino-acid sequence and be located at an appropriate distance from the plasma membrane to act as a signal for lysosomal degradation of AQP4. In addition to lysosomal degradation, we demonstrated that the YXXΦ motif also functions as a signal to degrade AQP4 using proteasomes under specific conditions.


Assuntos
Imunoglobulina G , Neuromielite Óptica , Camundongos , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Neuromielite Óptica/metabolismo , Neuromielite Óptica/patologia , Membrana Celular/metabolismo , Autoanticorpos/metabolismo , Astrócitos/metabolismo
8.
Clin Immunol ; 241: 109072, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35798242

RESUMO

Satralizumab, an antibody against IL-6R, has been recently approved in Neuromyelitis optica spectrum disorder(NMOSD). Targeting IL-6 or IL-6 Receptor(like Satralizumab does) results in inhibition of both pro and anti-inflammatory pathways of IL-6. Sgp130FC(Olamkicept) is a monoclonal antibody that prevents only the proinflammatory pathway of IL-6 to be activated, and could represent a better way to target IL-6 pathway in Neuromyelitis optica spectrum disorder.


Assuntos
Neuromielite Óptica , Anticorpos Monoclonais/uso terapêutico , Humanos , Interleucina-6 , Neuromielite Óptica/tratamento farmacológico , Neuromielite Óptica/metabolismo , Transdução de Sinais
9.
Comput Math Methods Med ; 2022: 4997393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509858

RESUMO

Objective: To analyze the role of C5a, C5a receptor (CD88), glutamic acid, and N-methyl-D-aspartic acid receptors (NMDAR1 and NMDAR2B) in the onset of neuromyelitis optica (NMO) disease in mice. Method: To select C57BL/6 wild-type (WT) mice and C5a receptor gene knockout (C5aR-/-) mice, use NMO-IgG and hemolytic complement to intervene in spinal cord tissue sections and optic nerves to establish an NMO model in vitro. The experiment was carried out with five groups (control group, WT group, C5aR-/- group, C5a group, and C5a+C5aRA group), with six mice in each group. The differences of American spinal cord injury (ASIA) motor scores were compared among all groups. The expressions of aquaporin (AQP4), glial fibrillary acidic protein (GFAP), NMDAR1, and NMDAR2B in spinal cord and optic nerve tissues were detected. The difference of glutamic acid (Glu) concentrations in culture solutions of the spinal cord and optic nerves was compared. Result: The ASIA motor score of the control group was significantly lower than that of the other four groups. The C5a-/- group was significantly higher than the WT group. The C5a+C5aRA group was significantly higher than the C5a group in terms of ASIA motor score. In the control group, AQP4 and GFAP showed expression loss. The C5aR-/- group's loss rate was significantly higher than that of the WT group. The loss rate of the C5a+C5aRA group was significantly higher than that of the C5a group. In the control group, the protein expressions of NMDAR1 and NMDAR2B were significantly lower than that of the other four groups. The C5aR-/- group was significantly higher than the WT group. The C5a+C5aRA group was significantly higher than the C5a group in protein expression. In the control group, the concentration of Glu in the C5aR-/- group was significantly higher than that in the WT group, and the C5a group was significantly lower than the C5a+C5aRA group. Conclusion: The deletion of the C5a receptor promotes NMDAR activity, which affects the toxic excitatory effect of NMDAR in NMO and regulates the neurotoxic effect of glutamic acid, thus participating in the pathogenesis of NMO.


Assuntos
Neuromielite Óptica , Traumatismos da Medula Espinal , Animais , Modelos Animais de Doenças , Ácido Glutâmico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato , Neuromielite Óptica/genética , Neuromielite Óptica/metabolismo , Receptor da Anafilatoxina C5a/genética
10.
Biomolecules ; 12(4)2022 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-35454180

RESUMO

Since the discovery of a specific autoantibody in patients with neuromyelitis optica spectrum disorder (NMOSD) in 2004, the water channel aquaporin-4 (AQP4) has attracted attention as a target of autoimmune diseases of the central nervous system. In NMOSD, the autoantibody (NMO-IgG) binds to the extracellular loops of AQP4 as expressed in perivascular astrocytic end-feet and disrupts astrocytes in a complement-dependent manner. NMO-IgG is an excellent marker for distinguishing the disease from other inflammatory demyelinating diseases, such as multiple sclerosis. The unique higher-order structure of AQP4-called orthogonal arrays of particles (OAPs)-as well as its subcellular localization may play a crucial role in the pathogenesis of the disease. Recent studies have also demonstrated complement-independent cytotoxic effects of NMO-IgG. Antibody-induced endocytosis of AQP4 has been suggested to be involved in this mechanism. This review focuses on the binding properties of antibodies that recognize the extracellular region of AQP4 and the characteristics of AQP4 that are implicated in the pathogenesis of NMOSD.


Assuntos
Aquaporina 4 , Neuromielite Óptica , Aquaporina 4/metabolismo , Autoanticorpos , Autoimunidade , Sistema Nervoso Central/metabolismo , Proteínas do Sistema Complemento/metabolismo , Humanos , Imunoglobulina G , Neuromielite Óptica/metabolismo , Neuromielite Óptica/patologia
11.
Brain ; 145(5): 1726-1742, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35202467

RESUMO

Neuromyelitis optica is a chronic neuroinflammatory disease, which primarily targets astrocytes and often results in severe axon injury of unknown mechanism. Neuromyelitis optica patients harbour autoantibodies against the astrocytic water channel protein, aquaporin-4 (AQP4-IgG), which induce complement-mediated astrocyte lysis and subsequent axon damage. Using spinal in vivo imaging in a mouse model of such astrocytopathic lesions, we explored the mechanism underlying neuromyelitis optica-related axon injury. Many axons showed a swift and morphologically distinct 'pearls-on-string' transformation also readily detectable in human neuromyelitis optica lesions, which especially affected small calibre axons independently of myelination. Functional imaging revealed that calcium homeostasis was initially preserved in this 'acute axonal beading' state, ruling out disruption of the axonal membrane, which sets this form of axon injury apart from previously described forms of traumatic and inflammatory axon damage. Morphological, pharmacological and genetic analyses showed that AQP4-IgG-induced axon injury involved osmotic stress and ionic overload, but does not appear to use canonical pathways of Wallerian-like degeneration. Subcellular analysis demonstrated remodelling of the axonal cytoskeleton in beaded axons, especially local loss of microtubules. Treatment with the microtubule stabilizer epothilone, a putative therapy approach for traumatic and degenerative axonopathies, prevented axonal beading, while destabilizing microtubules sensitized axons for beading. Our results reveal a distinct form of immune-mediated axon pathology in neuromyelitis optica that mechanistically differs from known cascades of post-traumatic and inflammatory axon loss, and suggest a new strategy for neuroprotection in neuromyelitis optica and related diseases.


Assuntos
Neuromielite Óptica , Animais , Aquaporina 4 , Astrócitos/metabolismo , Autoanticorpos/metabolismo , Axônios/patologia , Humanos , Imunoglobulina G/metabolismo , Camundongos , Neuromielite Óptica/metabolismo
12.
Sci Rep ; 12(1): 106, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997058

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing autoimmune disease characterized by the presence of pathogenic autoantibodies, anti-aquaporin 4 (AQP4) antibodies. Recently, HLA-DQA1*05:03 was shown to be significantly associated with NMOSD in a Japanese patient cohort. However, the specific mechanism by which HLA-DQA1*05:03 is associated with the development of NMOSD has yet to be elucidated. In the current study, we revealed that HLA-DQA1*05:03 exhibited significantly higher cell surface expression levels compared to other various DQA1 alleles, and that its expression strongly depended on the amino acid sequence of the α1 domain, with a preference for leucine at position 75. Moreover, in silico analysis indicated that the HLA-DQ encoded by HLA-DQA1*05:03 preferentially presents immunodominant AQP4 peptides, and that the peptide major histocompatibility complexes (pMHCs) are more energetically stable in the presence of HLA-DQA1*05:03 than other HLA-DQA1 alleles. In silico 3D structural models were also applied to investigate the validity of the energetic stability of pMHCs. Taken together, our findings indicate that HLA-DQA1*05:03 possesses a distinct property to play a pathogenic role in the development of NMOSD.


Assuntos
Aquaporina 4/metabolismo , Membrana Celular/metabolismo , Cadeias alfa de HLA-DQ/metabolismo , Epitopos Imunodominantes , Neuromielite Óptica/metabolismo , Sequência de Aminoácidos , Aquaporina 4/imunologia , Autoanticorpos/sangue , Membrana Celular/imunologia , Células HEK293 , Cadeias alfa de HLA-DQ/genética , Cadeias alfa de HLA-DQ/imunologia , Humanos , Imunoglobulina G/sangue , Modelos Moleculares , Neuromielite Óptica/diagnóstico , Neuromielite Óptica/genética , Neuromielite Óptica/imunologia , Ligação Proteica , Domínios Proteicos
13.
Mult Scler Relat Disord ; 58: 103496, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35032882

RESUMO

BACKGROUND: Cognitive impairment is a symptom present in part of patients with neuromyelitis optica spectrum disorder (NMOSD) and its pathophysiology is unknown. Dysfunction of the GABAergic/glutamatergic pathways involving inhibitory and excitatory neurotransmitters have been implicated in several neurological disorders. This study aimed to investigate the changes in inhibitory gamma-aminobutyric acid (GABA) and excitatory glutamate and glutamine (Glx) neurotransmitter levels and their correlations with cognitive functions in patients with NMOSD. METHODS: A total of 29 patients with NMOSD and 28 sex-, age-, and education-matched healthy controls (HCs) were included in the study. All participants underwent clinical and cognitive assessments and proton magnetic resonance spectroscopy scanning. Meshcher-Garwood point-resolved spectroscopy was used to measure GABA and Glx levels in the medial prefrontal cortex (mPFC) and left thalamus. Total creatine (tCr) was applied as an internal reference. The GABA and Glx levels in the patient group were compared with those in HCs and correlated with cognitive scores and clinical variables. RESULTS: Patients with NMOSD showed lower GABA+/tCr levels in the mPFC compared with HCs (P = 0.028). The GABA+/tCr levels in the mPFC were significantly associated with verbal memory performance (r = 0.462, P = 0.027) and overall cognition (r = 0.440, P = 0.035) in the NMOSD group. The GABA+/tCr levels in the left thalamus or Glx/tCr levels in both regions were not significantly different between groups, nor were they related to any cognitive domain in patients with NMOSD (all P values > 0.05). CONCLUSION: The GABA+ levels in the mPFC decreased and correlated with cognitive dysfunction in patients with NMOSD, suggesting that the changes in regional GABA+ levels might be a potential metabolic feature of cognitive decline in patients with NMOSD.


Assuntos
Disfunção Cognitiva , Neuromielite Óptica , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Ácido Glutâmico/metabolismo , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Neuromielite Óptica/complicações , Neuromielite Óptica/diagnóstico por imagem , Neuromielite Óptica/metabolismo , Córtex Pré-Frontal/diagnóstico por imagem , Ácido gama-Aminobutírico/análise
14.
Brain ; 145(4): 1379-1390, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34718426

RESUMO

Neuromyelitis optica is an autoimmune inflammatory disorder targeting aquaporin-4 water channels in CNS astrocytes. Histopathological descriptions of astrocytic lesions reported in neuromyelitis optica so far have emphasized a characteristic loss of aquaporin-4, with deposition of IgG and complement and lysis of astrocytes, but sublytic reactions have been underappreciated. We performed a multi-modality study of 23 neuromyelitis optica autopsy cases (clinically and/or pathologically confirmed; 337 tissue blocks). By evaluating astrocytic morphology, immunohistochemistry and AQP4 RNA transcripts, and their associations with demyelinating activity, we documented a spectrum of astrocytopathy in addition to complement deposition, microglial reaction, granulocyte infiltration and regenerating activity. Within advanced demyelinating lesions, and in periplaque areas, there was remarkable hypertrophic astrogliosis, more subtle than astrocytic lysis. A degenerative component was suggested by 'dystrophic' morphology, cytoplasmic vacuolation, Rosenthal fibres and associated stress protein markers. The abundance of AQP4 mRNA transcripts in sublytic reactive astrocytes devoid of aquaporin-4 protein supported in vivo restoration following IgG-induced aquaporin-4 endocytosis/degradation. Astrocytic alterations extending beyond demyelinating lesions speak to astrocytopathy being an early and primary event in the evolving neuromyelitis optica lesion. Focal astrocytopathy observed without aquaporin-4 loss or lytic complement component deposition verifies that astrocytic reactions in neuromyelitis optica are not solely dependent on IgG-mediated aquaporin-4 loss or lysis by complement or by IgG-dependent leucocyte mediators. We conclude that neuromyelitis optica reflects a global astrocytopathy, initiated by binding of IgG to aquaporin-4 and not simply definable by demyelination and astrocytic lysis. The spectrum of astrocytic morphological changes in neuromyelitis optica attests to the complexity of factors influencing the range of astrocytic physiological responses to a targeted attack by aquaporin-4-specific IgG. Sublytic astrocytic reactions are no doubt an important determinant of the lesion's evolution and potential for repair. Pharmacological manipulation of the astrocytic stress response may offer new avenues for therapeutic intervention.


Assuntos
Neuromielite Óptica , Aquaporina 4 , Astrócitos/metabolismo , Humanos , Imunoglobulina G/metabolismo , Neuromielite Óptica/metabolismo
15.
Front Immunol ; 12: 727750, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721390

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD), a relapsing autoimmune disease of the central nervous system, mainly targets the optic nerve and spinal cord. To date, all attempts at the establishment of NMOSD animal models have been based on neuromyelitis optica immunoglobulin G antibody (NMO-IgG) and mimic the disease in part. To solve this problem, we developed a rodent model by opening the blood-brain barrier (BBB) with low frequency ultrasound, followed by injection of NMO-IgG from NMOSD patients and complement to mice suffering pre-existing neuroinflammation produced by experimental autoimmune encephalomyelitis (EAE). In this study, we showed that ultrasound with NMO-IgG and complement caused marked inflammation and demyelination of both spinal cords and optic nerves compared to blank control group, as well as glial fibrillary acidic protein (GFAP) and aquaporin-4 (AQP4) loss of spinal cords and optic nerves compared to EAE mice and EAE mice with only BBB opening. In addition, magnetic resonance imaging (MRI) revealed optic neuritis with spinal cord lesions. We further demonstrated eye segregation defects in the dorsal lateral geniculate nucleus (dLGN) of these NMOSD mice.


Assuntos
Proteínas do Sistema Complemento/imunologia , Encefalomielite Autoimune Experimental/imunologia , Imunoglobulina G/imunologia , Neuromielite Óptica/imunologia , Animais , Aquaporina 4/metabolismo , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Imageamento por Ressonância Magnética , Camundongos Endogâmicos C57BL , Neuromielite Óptica/diagnóstico por imagem , Neuromielite Óptica/metabolismo , Nervo Óptico/diagnóstico por imagem , Nervo Óptico/imunologia , Nervo Óptico/metabolismo , Medula Espinal/diagnóstico por imagem , Medula Espinal/imunologia , Medula Espinal/metabolismo , Ondas Ultrassônicas
16.
J Neuroimmunol ; 361: 577752, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715591

RESUMO

Neuromyelitis Optica (NMO) is an autoimmune inflammatory disease that affects the optic nerves and spinal cord. The autoantibody is generated against the abundant water channel protein of the brain, Aquaporin 4 (AQP4). Of the two isoforms of AQP4, the shorter one (M23) often exists as a supramolecular assembly known as an orthogonal array of particles (OAPs). There have been debates about the fate of these AQP4 clusters upon binding to the antibody, the exact mechanism of its turnover, and the proteins associated with the process. Recently several clinical cases of NMO were reported delineating the effect of Rituximab (RTX) therapy. Extending these reports at the cell signaling level, we developed a glioma based cellular model that mimicked antibody binding and helped us track the subsequent events including a variation of AQP4 levels, alterations in cellular morphology, and the changes in downstream signaling cascades. Our results revealed the extent of perturbations in the signaling pathways related to stress involving ERK, JNK, and AKT1 together with markers for cell death. We could also decipher the possible routes of degradation of AQP4, post-exposure to antibody. We further investigated the effect of autoantibody on AQP4 transcriptional level and involvement of FOXO3a and miRNA-145 in the regulation of transcription. This study highlights the differential outcome at the cellular level when treated with the serum of the same patient pre and post RTX therapy and for the first time mechanistically describes the effect of RTX.


Assuntos
Aquaporina 4/metabolismo , Autoanticorpos/sangue , Autoantígenos/metabolismo , Imunoglobulina G/sangue , Neuromielite Óptica/metabolismo , Rituximab/uso terapêutico , Adulto , Aquaporina 4/genética , Aquaporina 4/imunologia , Autoantígenos/genética , Autoantígenos/imunologia , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/ultraestrutura , Forma Celular , Extensões da Superfície Celular/ultraestrutura , Feminino , Proteína Forkhead Box O3/fisiologia , Glioblastoma , Humanos , Leupeptinas/farmacologia , Masculino , MicroRNAs/genética , Microscopia Confocal , Neuromielite Óptica/tratamento farmacológico , Neuromielite Óptica/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Análise de Célula Única , Transcrição Gênica , Adulto Jovem
17.
CNS Neurosci Ther ; 27(12): 1549-1560, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34637583

RESUMO

AIM: This study aimed to determine the correlation between B-lymphoid tyrosine kinase (BLK) polymorphism, mRNA gene expression of BLK, and NMOSD in a Chinese Han population. BACKGROUND: B-lymphoid tyrosine kinase gene expressed mainly in B cells plays a key role in various autoimmune disorders. However, no studies have investigated the association of BLK polymorphisms with neuromyelitis optica spectrum disorder (NMOSD). METHODS: Han Chinese population of 310 subjects were recruited to analyze three single nucleotide polymorphisms (rs13277113, rs4840568, and rs2248932) under allele, genotype, and haplotype frequencies, followed by clinical characteristics stratified analysis. Real-time PCR was used to analyze mRNA expression levels of BLK in the peripheral blood mononuclear cells of 64 subjects. RESULTS: Patients with NMOSD showed lower frequencies of the minor allele G of rs2248932 than healthy controls (odds ratio (OR) =0.57, 95% confidence intervals (CI) 0.39-0.83, p = 0.003). The association between minor allele G of rs2248932 and reduced NMOSD susceptibility was found by applying genetic models of inheritance (codominant, dominant, and recessive) and haplotypes analysis. Subsequently, by stratification analysis for AQP4-positivity, the minor allele G frequencies of rs2248932 in AQP4-positive subgroup were significantly lower than in the healthy controls (OR =0.46, 95% CI 0.30-0.72, p = 0.001). Notably, the genotype GG of rs2248932 was more frequent in AQP4-negative subgroup (n = 14) than in AQP4-positive subgroup (n = 93) (p = 0.003, OR =0.05, 95% CI =0.01-0.57). BLK mRNA expression levels in the NMOSD patients (n = 36) were lower than in healthy controls (n = 28) (p < 0.05). However, the acute non-treatment (n = 7), who were untreated patients in the acute phase from the NMOSD group, showed BLK mRNA expression levels 1.8-fold higher than healthy controls (n = 8) (p < 0.05). CONCLUSION: This study evaluated that the minor allele G of rs2248932 in BLK is associated with reduced susceptibility to NMOSD and protected the risk of AQP4-positive. BLK mRNA expression in NMOSD was lower as compared to healthy controls while significantly increased in acute-untreated patients.


Assuntos
Neuromielite Óptica , Quinases da Família src/genética , Adulto , China , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Neuromielite Óptica/genética , Neuromielite Óptica/imunologia , Neuromielite Óptica/metabolismo , Polimorfismo de Nucleotídeo Único , Quinases da Família src/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-34465614

RESUMO

BACKGROUND AND OBJECTIVES: To assess the molecular landscape of B-cell subpopulations across different compartments in patients with neuromyelitis optica spectrum disorder (NMOSD). METHODS: We performed B-cell transcriptomic profiles via single-cell RNA sequencing across CSF, blood, and bone marrow in patients with NMOSD. RESULTS: Across the tissue types tested, 4 major subpopulations of B cells with distinct signatures were identified: naive B cells, memory B cells, age-associated B cells, and antibody-secreting cells (ASCs). NMOSD B cells show proinflammatory activity and increased expression of chemokine receptor genes (CXCR3 and CXCR4). Circulating B cells display an increase of antigen presentation markers (CD40 and CD83), as well as activation signatures (FOS, CD69, and JUN). In contrast, the bone marrow B-cell population contains a large ASC fraction with increased oxidative and metabolic activity reflected by COX genes and ATP synthase genes. Typically, NMOSD B cells become hyperresponsive to type I interferon, which facilitates B-cell maturation and anti-aquaporin-4 autoantibody production. The pool of ASCs in blood and CSF were significantly elevated in NMOSD. Both CD19- and CD19+ ASCs could be ablated by tocilizumab, but not rituximab treatment in NMOSD. DISCUSSION: B cells are compartmentally fine tuned toward autoreactivity in NMOSD and become hyperreactive to type I interferon. Inhibition of type I interferon pathway may provide a new therapeutic avenue for NMOSD.


Assuntos
Linfócitos B/metabolismo , Neuromielite Óptica/metabolismo , Transcriptoma , Adulto , Aquaporina 4/imunologia , Linfócitos B/efeitos dos fármacos , Medula Óssea/metabolismo , Humanos , Fatores Imunológicos/farmacologia , Células B de Memória/efeitos dos fármacos , Células B de Memória/metabolismo , Neuromielite Óptica/sangue , Neuromielite Óptica/líquido cefalorraquidiano , Neuromielite Óptica/tratamento farmacológico , Análise de Sequência de RNA
19.
J Neuroinflammation ; 18(1): 208, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530847

RESUMO

Neuromyelitis optica (NMO) is a chronic inflammatory autoimmune disease of the central nervous system (CNS) characterized by acute optic neuritis (ON) and transverse myelitis (TM). NMO is caused by a pathogenic serum IgG antibody against the water channel aquoporin 4 (AQP4) in the majority of patients. AQP4-antibody (AQP4-ab) presence is highly specific, and differentiates NMO from multiple sclerosis. It binds to AQP4 channels on astrocytes, triggering activation of the classical complement cascade, causing granulocyte, eosinophil, and lymphocyte infiltration, culminating in injury first to astrocyte, then oligodendrocytes followed by demyelination and neuronal loss. NMO spectrum disorder (NMOSD) has recently been defined and stratified based on AQP4-ab serology status. Most NMOSD patients experience severe relapses leading to permanent neurologic disability, making suppression of relapse frequency and severity, the primary objective in disease management. The most common treatments used for relapses are steroids and plasma exchange.Currently, long-term NMOSD relapse prevention includes off-label use of immunosuppressants, particularly rituximab. In the last 2 years however, three pivotal clinical trials have expanded the spectrum of drugs available for NMOSD patients. Phase III studies have shown significant relapse reduction compared to placebo in AQP4-ab-positive patients treated with satralizumab, an interleukin-6 receptor (IL-6R) inhibitor, inebilizumab, an antibody against CD19+ B cells; and eculizumab, an antibody blocking the C5 component of complement. In light of the new evidence on NMOSD pathophysiology and of preliminary results from ongoing trials with new drugs, we present this descriptive review, highlighting promising treatment modalities as well as auspicious preclinical and clinical studies.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Autoanticorpos/metabolismo , Imunossupressores/uso terapêutico , Neuromielite Óptica/tratamento farmacológico , Neuromielite Óptica/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Aquaporina 4/imunologia , Aquaporina 4/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Astrócitos/metabolismo , Autoanticorpos/efeitos dos fármacos , Autoanticorpos/imunologia , Azatioprina/farmacologia , Azatioprina/uso terapêutico , Ensaios Clínicos Fase III como Assunto/métodos , Humanos , Imunossupressores/farmacologia , Neuromielite Óptica/imunologia
20.
J Neuroimmunol ; 360: 577702, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34547512

RESUMO

Myelin oligodendrocyte glycoprotein antibody disease (MOGAD) and aquaporin-4 IgG seropositive neuromyelitis optica spectrum disorder (AQP4-IgG+ NMOSD) are generally considered to be relapsing disorders, without clinical progression or subclinical disease activity outside of clinical relapses, in contrast to multiple sclerosis (MS). With advances in the diagnosis and treatment of these conditions, prolonged periods of remission without relapses can be achieved, and the question of whether progressive disease courses can occur has re-emerged. In this review, we focus on studies exploring evidence for and against relapse-independent clinical progression and/or subclinical disease activity in patients with MOGAD and AQP4-IgG+ NMOSD.


Assuntos
Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Aquaporina 4/imunologia , Autoanticorpos/imunologia , Autoantígenos/imunologia , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/diagnóstico por imagem , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/metabolismo , Progressão da Doença , Potenciais Evocados Visuais , Humanos , Imunoglobulina G/imunologia , Imageamento por Ressonância Magnética , Neuroimagem , Neuromielite Óptica/diagnóstico por imagem , Neuromielite Óptica/imunologia , Neuromielite Óptica/metabolismo , Recidiva , Vasos Retinianos/diagnóstico por imagem , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...